
Our proposed method:
1. Rank the samples using an anomaly detector
2. Sample and review top scoring clips to look for anomalies of interest using the entire labeling budget
3. Get “freebies” from the center of the distribution and assume they are normal without review
4. Train a rare behavior binary classifier to get interesting samples from the dataset
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Continuous recording is crucial 
to find rare behaviors, but also 
creates an analysis bottleneck.

We ask:
1. How do we efficiently find 
rare behaviors on a budget?

2. Can we make no assumptions 
regarding the type, frequency or even 
existence of such behaviors?

Anomaly detection alone is not the answer, there’re many different types 

of anomalies! 

Here we use pose data, and focus on motion anomalies, but we’d like to note that:

A) Motion anomalies are not semantic anomalies, but are a good proxy for us

B) You can choose a different representation for your system and use the same 

concepts!

Attack on prey Sensor noise Plain old False 

Positive

Swimming away from 

stimulus

Anomaly
detection

behaviors:

most
normal

most
abnormalanomaly

scorescommon rare

Train
classifier

Do review possible rare needlesDon’t review common twigs

Dataset size = 2 x Labeling budget
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PoseR - a fish behavior dataset [1]

• 28K clips from neurobiology labs

• Rare behaviors make up ~5% of the 

data
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Performance under increasing motion similarity. Using a synthetic dataset, we modeled classifier performance (y-axis) as a function of  

motion similarity (panels), rarity (x-axis), labeling effort and sampling method. Results presented here are for a labeling budget of 200 samples.  

Our method is most beneficial when behavior frequency is <1%. 

Effect of labeling effort on performance.

Classifier performance (AuPRC) as a function of 

labeling effort averaged across all tested rarities, 

the ribbon represents the 95% confidence 

intervals. 0.00
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Performance as a function of rarity. 

Statistical modeling of classifier 

performance (in AuPRC) as a function of 

rarity (x-axis), labeling effort, and 

sampling method. We plot the predicted 

performance for a labeling budget of 200 

samples.

P
roblem

 setup
A

pproach
 Check out our paper and code for more: https://shir3bar.github.io/sifting-the-haystack-page/  
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