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A B S T R A C T
Measuring behaviors that affect fitness is a critical task in the study of ecology and evolution.
Behaviors such as feeding, fleeing predators, fighting conspecifics and mating are critical to
an individuals’ fitness but are often unpredictable in space and time and can be rare in natural
and experimental systems. Sparsely occuring behaviors are therefore difficult to quantify, and
extracting them from video streams is extremely time consuming. In this study, we use a case
study of larval fish feeding, a sparse behavior that is critical to larval survival, to demonstrate how
an AI-assisted system can be applied to overcome the problem of quantifying sparsely occuring
events. We deployed our system in aquaculture rearing ponds to directly estimate the strike rate of
larval fish outside the laboratory for the first time, and assess the effects of environmental factors
on these rates. Our analysis pipeline far surpassed the performance of manual annotation, both
in terms of time efficiency and its ability to retrieve feeding strikes. We found that strike rates
were similar and low across age groups, irrespective of pH and oxygen levels. However, strike
rates increased significantly with increasing temperature. Our system allowed probing into the
biology of a sparsely occuring behavior with unprecedented efficiency. However, it revealed that
analyzing rare behaviors requires further development of research methodologies suited for low
sample sizes and highly imbalanced data.

1. Introduction1

The concept of fitness is a hallmark in biology and is considered the driving force of evolution (Schluter, 2001).2

It is defined as the relative contribution to the gene pool of the next generation by an individual (Schluter, 2001).3

Despite its importance, fitness is a difficult metric to quantify directly. To measure fitness outside the laboratory,4

studies often use field enclosures (Martin and Wainwright, 2013) or large mesocosms (Arnegard et al., 2014; Bassar5

et al., 2015). In practice, fitness is often approximated by metrics such as reproductive capability, social dominance,6

or lifespan (McGraw and Caswell, 1996; Ariew and Lewontin, 2004; Van de Walle et al., 2022; Viblanc et al., 2022).7

Accordingly, mating, feeding, avoiding predators, and engaging in intra-specific interactions have a large effect on an8

animal’s fitness and are thought to be under strong natural selection.9

Disproportionately to their importance, quantifying these behaviors can be exceedingly difficult. This is because in10

many cases mating, hunting, avoiding predators, and engaging in intra-specific interactions can be rare (i.e., sparse).11

Here, we define "sparse behaviors" as behaviors that are (1) unpredictable in space and time, and (2) their natural12

frequency is low enough to make it difficult to detect and extract them from continuous observational data. Useful13

criteria to define "low frequency" can be the commonly utilized threshold of Fisher’s P value (probability to randomly14

select the behavior of interest from the pool is <0.05) or the 3- and 6-sigma rules for outlier detection (Cook et al., 2021).15

However what exactly constitutes a "sparse behavior" will differ with the nature of the data, the way it is collected, the16

study system, and how distinctive the behaviors are (Cook et al., 2021).17
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The advent of imaging technology has boosted the use of videos and still images for modern observation-based18

ecological and behavioral research (Tuia et al., 2022; Datta et al., 2019). These methods have the advantage of being19

relatively cheap, non-intrusive, and easily scalable. Unlike individual-mounted sensors, they do not require capturing20

or handling animals. However, raw data obtained by videography and automated photography is amassing quickly,21

while analysis capabilities remain a bottleneck; specifically for sparse behaviors. For example, Bessa et al. (2022)22

deployed 56 trail cameras for roughly 18 months to study the cultural behaviors of four chimpanzee communities.23

The resulting dataset contained ∼ 4000 video clips, but only ∼ 1150 contained chimpanzee behaviors. Of these, only24

203 (∼ 5%) of the clips featured behaviors that were of immediate interest to researchers. The mean number of video25

clips for these behavioral classes of interest was low, with a mean of 14 clips (range 1-64 clips). Such low ratios of26

gain-to-effort provide a strong incentive to automate the detection of sparse fitness-determining events in laboratory,27

field, and mesocosm studies (Hanscom et al., 2023).28

Computer vision, the study of extracting information from imagery, can provide solutions to ecologists (Weinstein,29

2018; Tuia et al., 2022; Christin et al., 2019). But, the small sample sizes that plague the study of fitness-related30

behaviors hinder not only biological research but also most modern computer vision methods. In particular, deep31

learning models (LeCun et al., 2015), which can provide the key to automation, are infamously "data hungry" (Christin32

et al., 2019; Aggarwal et al., 2018). To analyze data using a deep learning model, the model has to be trained first,33

using observations that represent the behaviors of interest, in a visually-similar environment. Typically, these training34

datasets consist of at least a few hundred (and more commonly 1000s) examples per "action class", or behavior (e.g.,35

Carreira and Zisserman, 2017). This leads to a paradoxical situation whereby a researcher wanting to automate their36

research pipeline will likely collect sufficient data that would allow them to answer their biological questions before37

collecting enough data to train a deep learning model. Thus, it is challenging to apply novel computer vision solutions38

to biological data. This is particularly true for datasets of sparsely occurring behaviors that, as shown above (Bessa39

et al., 2022), are typically small and highly variable.40

In this paper, we propose a deep learning pipeline for the detection of sparsely occurring behaviors in continuous41

video data (Fig. 1). We focus on one model behavior, that of larval fish feeding in mesocosms under variable42

environmental and filming conditions. Larval feeding is known to be rare (few prey items per hour per fish), especially43

during early ontogeny (China and Holzman, 2014; China et al., 2017; Shamur et al., 2016). Moreover, because the44

larvae and the prey are freely moving in a large volume of water, feeding attempts are unpredictable in space and45

time. Lastly, larval feeding is known to be critical to larval growth and survivorship, and hence can be considered a46

fitness-determining trait (China and Holzman, 2014).47

Although we filmed within a set of mesocosms, we faced considerable challenges that are typical of uncontrolled48

conditions (Barbedo, 2022). These included fluctuating water turbidity and lighting, prey and larval fish density,49

currents, and turbulence. In addition, because we were filming a small volume within a much larger tank, we50

experienced individuals occluding one another, moving in and out of the frame, in and out of focus, and appearing51

in variable orientations with respect to the camera. These challenges are not unique to underwater mesocosms and52

are also reported in studies applying computer vision to study animal behavior and movement in aviaries (Xiao et al.,53

2023), zoos, and terrestrial enclosures (Joska et al., 2021; Labuguen et al., 2021). These features are usually avoided in54

the laboratory. We discuss our use case as an intermediate step from estimating sparse behaviors in the laboratory and55

in the field. We share some of the practical issues we were confronted with when using AI models to quantify a rare56

behavior under variable visual conditions and provide insights as to how to address them. In particular, we discuss how57

to evaluate the performance of binary classifiers on imbalanced data and highlight issues with common performance58

metrics. Lastly, we show how using our method we were able to achieve not only a speedup in time efficiency and59
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reduction of work effort but also retrieve twice the amount of behavioral events of interest when compared with manual60

analysis.61

Figure 1: Overview of the study workflow. Deployed in an aquaculture rearing pool (left), our specialized system yielded
high-speed videos of larval fish behavior. We manually reviewed these, searching for larval feeding strikes. We then developed
an AI-assisted analysis pipeline and benchmarked it against the manual review method. To complete the pipeline, we show
that we can reliably quantify feeding strike rates and display a use case for investigating the link between strike rates and
environmental variables.

1.1. Examples of quantifying sparse behaviors span across taxa and study systems62

Wrangham and Van Zinnicq Bergmann Riss (1990) quantified predation rates by two chimpanzee communities63

over the course of 3 years, and invested more than 14.5K man hours of 30 researchers in order to collect observations.64

The resulting predation rates were too low to estimate in female chimpanzees and were estimated for males as 0.3165

kills per male per 100 hours with a sample size of 17 individuals. In cooperatively breeding manakins, extra-paired66

copulations were never observed in 3,400 hrs of observation and 19,221 hours of video recordings, despite genetic67

evidence for such cheating events (Boyle and Shogren, 2019). A study on beach-hunting, a rare feeding strategy in68

dolphins, invested over 10 years of observation to describe this behavior only in four maternal lineages (a total of69

23 focal individuals) within the local populations (Sargeant et al., 2005). Other examples of rare behaviors and events70

include birth rate in Savannah Baboons (McLean et al., 2019) (N=199 from a 47-year-long database), feeding in snakes71

(Hanscom et al., 2023), proportional prey tracking in falcons (Cook et al., 2021), and hybridization in Galapagos finches72

(Cook et al., 2021). These low rates of occurrence incur a high cost for data collection and thus limit the investigation of73

new populations and study sites. This limitation makes it difficult to understand the effect of variation in environmental74

conditions on the measured behaviors and limits our ability to generalize beyond populations where these behaviors75

are easy to measure.76

When the frequency of the behavior of interest is low (e.g. « 1%), extracting and curating a dataset suitable for77

statistical analysis becomes time-consuming and challenging. One common solution mainly used for biodiversity78

estimates in marine systems is Baited Remote Underwater Videos (BRUV). The baits in the systems are meant to79

lure fish in front of the camera setup. However, such systems are biased towards specific species, and since they elicit80

behaviors artificially, they are not suited to study the rates and distribution of naturally-occuring sparse behaviors81

(Sheehan et al., 2020). Another solution involves triggering the camera when a particular event of interest occurs, for82

example motion as in camera traps (e.g., Bessa et al., 2022), or using onboard object detection (e.g., Coro and Walsh,83

2021). Such systems are useful when the organisms are rarely detected (e.g., unbaited camera in the deep sea Coro and84

Walsh, 2021) but not when a frequently encountered animal rarely performs a behavior of interest.85
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1.2. Larval fish feeding during early ontogeny86

Most marine fish reproduce by external fertilization, releasing small (1 mm diameter) eggs into the water column.87

The embryos develop and hatch in the open ocean, and transition to exogenous feeding after a few days. This transition88

and the period following it are considered “the critical period” of larval fish, due to the extremely high mortality rates89

experienced by the larvae. It is estimated that >95% of the larvae die within a couple of weeks (Houde and Schekter,90

1980; Hjort, 1914). Such mortality has far-reaching effects on the dynamics of natural populations and commercial91

fish stocks because small changes in survivorship rates translate to a large number of adults in the population. High92

rates of mortality are also a general phenomenon in the commercial rearing of marine fish larvae in aquaculture, where93

conditions are supposedly optimal. Mortality rates of »70% of the cohort are not uncommon (Shields, 2001) even94

when optimizing environmental factors such as temperature, oxygen, pH, and prey types. Despite decades of research95

on larval mortality during the critical period, there is no consensus regarding the relative importance of the processes96

that affect the magnitude of this mortality nor regarding the relative effects of environmental factors on it (Houde,97

2008; Pepin, 2023). Yet, starvation is clearly a major mortality agent for larvae, and the larvae’s ability to feed is a98

critical component that determines their individual survivorship.99

Larval fish capture their prey using suction feeding. In this feeding mode, the fish abruptly open the mouth and100

expand the buccal cavity to generate an inflow of water into the mouth that carries the prey in with it (Holzman et al.,101

2015; Yaniv et al., 2014; China and Holzman, 2014). Suction-feeding is an extremely rapid behavior, with events102

typically taking less than 40 milliseconds from the start of mouth opening to mouth closing. Larval fish are minuscule,103

hatching at a body length of ∼3 mm, and growing to ∼10 mm at 30 days post-hatching (DPH). Correspondingly, both104

their mouth and prey diameter measure ca. 0.1-1 mm. The size of the animals, their speed, and erratic 3D motion,105

therefore, necessitated the development of a specialized filming system (Yúfera and Darias, 2007; Crespi and New,106

2009; China and Holzman, 2014; Kamacı et al., 2005; Shamur et al., 2016).107

Direct visualization of larval feeding under laboratory conditions brought about new insights into the mechanisms108

of feeding success (China and Holzman, 2014; China et al., 2017) and the mechanism of prey selectivity (Sommerfeld109

and Holzman, 2019). These studies revealed that the outcome of their interaction with prey is governed by the110

hydrodynamic regime in which they dwell and that the overall rate of successful prey capture was low, but increased111

with the age and size of the larvae. Quantification of hunger-related neuropeptides revealed that first feeding (8-10 DPH)112

larvae experience chronic hunger even under high prey densities, and experimental manipulation of the hydrodynamic113

regime in which the larvae dwell directly affects their level of starvation (as indicated by neuropeptide secretion; Koch114

et al., 2019).115

However, direct observations on larval feeding are restricted to fish swimming in well-plates, petri-dishes, or small116

aquaria. The feeding rates observed under these conditions probably do not represent the rates typical of large-scale117

tanks and mesocosms due to prevailing wall effects, low spatial variability, and near-static water in the laboratory118

(Englund and Cooper, 2003; MacKenzie et al., 1990). To the best of our knowledge, there are no direct estimates of119

feeding rates of larval fish outside the laboratory, despite their potential importance for understanding larval condition120

and survivorship. Studies conducted in large mesocosms (e.g., larval rearing pools) and in the open ocean focused on121

indirect measures of feeding performance such as gut content and stable isotope analysis (Pepin, 2023; Schlechtriem122

et al., 2004). These methods provide an estimate of nutritional state rather than a mechanistic understanding of the123

determinants of feeding rates, as they cannot suggest a cause for the starvation nor inform researchers of the number124

of attempts (and effort) that preceded successful captures. Additionally, gut content is problematic because evacuation125

times are highly variable and contingent upon a multitude of intrinsic and extrinsic variables. Stable isotope analysis,126
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measurements of RNA/DNA ratios, and gene expression studies all provide useful information but suffer similar127

limitations (Tanaka et al., 2008; Foley et al., 2016; Buckley, 1984; Yúfera et al., 2018; Schlechtriem et al., 2004).128

2. Methods129

In this section, we present the development of an analysis pipeline for the detection of larval fish behavior130

in aquaculture rearing pools, from the initial infrastructure to the deep learning models (Fig. 1). We first briefly131

describe the study system and our novel imaging system designed to visualize millimeter-sized, fast-moving organisms132

underwater (section 2.1). We explain the AI-assisted analysis pipeline for the detection of the feeding strike behavior of133

larval fish and its evaluation (section 2.2). Here, we also expand on the challenges of training using very small sample134

sizes, compared with regular computer vision datasets, and how we chose to tackle them (section 2.2.1). Finally, we135

expand on our statistical analysis, to ascertain our measurements (section 2.3). An in-depth description of the training136

of the main powerhouse of our analysis pipeline, namely the classification module, is provided in the supplementary137

material (section S3) and our code.138

2.1. Study system, data acquisition, and annotation139

The feeding behavior of larval sea-bream Sparus aurata was recorded for 17 cohorts over the course of 18 months140

in eight rearing tanks located in a commercial aquaculture facility (ARDAG hatchery, Eilat, Israel). We deployed a141

submerged camera system in the tanks to record the activity of freely-behaving larval fish, from an age of 8 DPH to142

30 DPH. In this facility, larvae are reared in large circular tanks (4 m in diameter and ∼1.5 m deep, Fig. 2a) under143

controlled temperature and oxygen conditions. Cohorts of ∼ 106 eggs are introduced into each tank, where they hatch144

and are grown until they metamorphose to adult-like morphology at ∼35 DPH. Larvae are fed twice a day with various145

food types (Rotifers, Artemia, and pellets) according to their age and size. Note that, here, controlled does not mean146

constant. Rearing protocols typically indicate a range of acceptable values to be maintained for each parameter (e.g.,147

80-100 % for 𝑂2), and changes in temperature, oxygen, and prey type may appear at different stages of the ontogeny.148

Additionally, as a large-scale commercial facility, conditions are not as strictly maintained as in the laboratory, and149

deviations from desired conditions are common.150

Filming was done using a high-speed monochrome camera (Optronics CP70-2-M/C-1000) enclosed in an151

underwater housing, submerged to ∼0.2-0.3 m depth, and connected to a computer equipped with a frame-grabber152

(Cyton Quad Channel CoaXPress frame grabber CXP6) and a GPU (NVIDIA GeForce RTX)(Fig. 2 a,b). The system153

recorded long high-speed videos (20-30 min) at 500 or 750 (N=191 and N=32, respectively) frames per second (fps)154

and a resolution of 1920 × 1080 pixels. During the course of the study, the lower frame rate was found to be sufficient155

for identifying the feeding attempts, while being more reliable in terms of video quality.156

The camera was equipped with a Navitar 6000 ultra-zoom lens providing 2:1 magnification (i.e., 2 mm in the real157

world is mapped on 1 mm of the camera’s sensor) with a large depth-of-field of 50 mm. A battery-operated SCUBA158

flashlight (Scubatec US15 LED 10 Watt) provided backlight illumination essential for filming in high frame rates159

and under such optical constraints. See supplementary material section S1.1 "illumination system" for a discussion of160

possible effects on larval behavior.161

The setup enabled visualizing events within a volume of 40× 60× 50 mm (𝐻 ×𝑊 ×𝐷). At the beginning of each162

filming day, we recorded the temperature and oxygen concentration in the pool using a HOBO oxygen meter (HOBO163

U26-001 Dissolved Oxygen, Onset Computer Corp). The pH of the water was measured using a pH electrode.164

Overall, we obtained and reviewed over 77.73 hours of high-speed videos in 223 videos; accumulating to ∼ 146.25165

million frames. To manually annotate the sparse feeding events, a trained observer watched each video at 10-15 FPS166
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Figure 2: The camera system and data acquisition setup. (a) the camera system in a fish larvae rearing pool at the ARDAG
hatchery, Eilat; (b) a schematic depiction of the submerged camera setup, including a representation of the focal volume,
where fish appear sharpest; note that this volume is a mere 0.002 % of the pool (c) an example of a full video frame acquired
using the system. Larvae appear in various levels of sharpness within the frame, see Fig. S1 in supplementary material
for more examples; (d) an example of a "swim" sequence from the dataset (see clip Video S1); and (e) a representative
sequence of a "strike" event from the dataset (see clip Video S2).

and noted the time and coordinates of all feeding strikes. Strikes were defined as events that combined a rapid forward167

lunge and opening of the mouth (Fig. 2e). Such strikes are visually distinct and represent high-effort prey-acquisition168

attempts that are likely to be successful (China et al., 2017). We manually annotated 149 full-length videos (mean169

duration = 20.92±12.93 min). We estimate that annotating this dataset took a minimum of 2,235 work hours; or about170

50 min work per minute of video. This is an underestimation as the observers often had to re-play the video to ascertain171

an observation.172

2.2. Analysis pipeline173

We analyzed our videos using a computer vision pipeline, consisting of two deep learning models: a fish detector174

(Faster-R-CNN, Girshick, 2015) and an action classifier. We trained and evaluated each model separately (sections S3175

and S4 in the supplementary material). After training, and prior to the application of this pipeline to long, uncut videos,176

we evaluated the performance of several action classifiers on a test set in order to select the best-performing model for177

the pipeline. Below, we discuss each of the steps above. We focus on consideration for training using a small sample178

size, classifier evaluation, and the application of the whole pipeline to our untrimmed video data. See supplementary179

material (section S3) for more technical details on classifiers’ training and their performance180

2.2.1. Training binary classifiers under a low data regime181

Our training data contained 71 non-strikes (swims; negative class) and 66 strikes (positive class) and was limited182

by the number of strike samples available to us at the time. This is a modest number for training, posing a challenge183

with training the classifiers. However, this is a common difficulty in ecological datasets, especially when the behaviors184

of interest are scarce. We tackled this data scarcity using complementary approaches: A highly curated and balanced185

training set, transfer learning (Tan et al., 2018), intensive data augmentations tailored for our dataset, and integration186

of our prior biological knowledge as additional input to the model.187
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We chose to train on a balanced dataset, keeping the number of non-strikes samples similar to that of the188

strikes. Other methods for training on imbalanced data include class resampling (undersampling the majority class, or189

upsampling the minority class), weighted loss, or focal loss, but were not used in this study. To make the most out of190

the data, we used only samples containing high-quality clips of single fish performing a single action, with each clip191

being tightly cropped around the fish. The duration of each strike clip was cut temporally 10 frames before the fish’s192

mouth opened and 5 frames after the mouth closed. We contrasted the ’strike’ class with only clips of fish performing193

routine undulatory swims. This was also done in order to maximize the model’s ability to learn the abrupt kinematics194

of strike events. Details on the training set and its partitions are available in the supplementary material (Table S1).195

We used transfer learning to leverage open-source models trained on large image datasets. Essentially, instead of196

initializing model parameters randomly, we start from the trained model and then fine-tune it for our classification task.197

Please see our code for further details.198

To assess the contribution of pre-training to model performance, we trained a SlowFast network from scratch on199

our dataset. We also tested whether using a model pre-trained on a different dataset might improve performance. For200

this, we compared a couple of SlowFast networks pre-trained on different datasets. The first network was pre-trained201

on the Kinetics-400 dataset (Carreira and Zisserman, 2017) - a dataset of 400 human action classes, with over 400202

clips per class. A second network was pre-trained on the Something-SomethingV2 dataset (SSv2) (Goyal et al., 2017),203

after being trained on Kinetics. We were inspired by works such as Mathis et al. (2018) which showed that pre-training204

on human pose data is beneficial when learning animal pose, in spite of the difference in domains. We chose the SSv2205

dataset because recent work suggested it encourages the learning of more dynamic, temporal-related features (Kowal206

et al., 2022). In all experiments, we used the publicly available models and weights in the PyTorchVideo repository207

(Fan et al., 2021; Paszke et al., 2019). We fine-tune all weights in the model for 50 epochs, full details are provided in208

(Bar et al., Unpublished results) and our code.209

Our training dataset, though small, showed a diversity of visual conditions; main differences in lighting intensity,210

and degree of blurriness of the fish (Fig. S1). To encourage model generalization over these conditions and to enhance211

the number of samples in our dataset, we randomly applied augmentations (modifications) to the intensity values of212

clips, varying the degree of brightness, and augmented the sharpness of clips by randomly applying Gaussian blur to213

samples during training.214

We integrated our knowledge of the biology and behavior of the fish to generate an additional channel of information215

in our clips. We exploited the fact that "strike" behavior is characterized by abrupt movements, while "swim" behavior216

is typically a smooth undulatory movement. These differences are expected to affect the rate at which pixels change217

their intensity values throughout the clip, with "strike" pixels showing areas of higher variance. To capture this, we218

calculated a single variance image of the entire clip (see Fig. S2) and used it as additional input to the model. The219

variance image was duplicated along the temporal axis and stored as a third channel, alongside two duplicate channels220

of the clip’s monochrome sequence. We note that given a larger dataset, we would expect our classification module221

to learn such features independently, making this additional channel superfluous. However, in light of our low data222

regime, we considered that this manipulation would inform the classifier and enhance learning.223

2.2.2. Classifier evaluation224

After successfully training and comparing several different classifiers, we evaluated the two best-performing225

models, both variants of SlowFast action detection network (Feichtenhofer et al., 2019), on an imbalanced test set.226

This test set was created to emulate the extreme class imbalance and challenging visual conditions (e.g., overexposure,227

occlusions, blurred images) prevalent in untrimmed video sequences.228
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The test set consists of short clips and has two behavior classes; non-strike (n=4,500) and striking on prey (n=63).229

The non-strike class featured mostly routine swimming behavior, but also turns, acceleration and deceleration, and230

some unusual abrupt movements that we associated with spitting prey. We treat the strike class as the positive and the231

non-strike as the negative class.232

The action classifiers assign a "strike score" to each clip, indicating the probability of the clip belonging to the233

positive class. To assign clips to action classes, one needs to select a threshold score above which clips are considered234

strikes and under which clips are considered non-strikes. Ideally, this "decision threshold" would minimize the number235

of false predictions by the classifier. Such false predictions can be divided into two cases: (1) false positives, i.e.,236

non-strike being classified as strikes; and (2) false negatives, i.e., strikes being classified as non-strike.237

As customary in binary classification evaluation, we use the Receiver Operator Curve (ROC) (Hanley et al., 1989),238

to obtain an estimate of the overall classifier performance across the entire range of decision thresholds. The area under239

this curve (AuROC) is often used to give a single score to the quality of the classifier. We also evaluated the classifier240

using the Precision-Recall Curve (PRC), following best practice for imbalance data (Saito and Rehmsmeier, 2015),241

and used the area under this curve (AuPRC) as an additional quality score. PRC is sensitive to the class imbalance of242

the dataset, with expected curves changing according to the positive class percent in the data (Brabec et al., 2020), and243

therefore caution should be taken when extrapolating the performance for datasets of different class imbalances. All244

metrics were calculated using the precrec package in R (Saito and Rehmsmeier, 2017).245

2.2.3. Pipeline application246

The best-performing classifier on the test set, the SlowFast network pre-trained on the SSv2 dataset, was used in the247

pipeline in conjunction with our trained Faster-R-CNN fish detector (supplementary material section S4). The pipeline248

was applied to the first five minutes of each of our 223 videos. We applied it in a sliding window fashion such that a249

focal frame is sampled every 60 frames throughout each 5-minute sequence. For each focal frame, the detector was250

applied to locate all the fish in the frame (see Fig. 3). Around each of these detections, we created a short cropped251

clip. The clips were centered around each detection, with the cropping size determined according to the typical size of252

the fish in each video (range: 250-650 pixels). Temporally, each clip consisted of a ±40 frame window of the cropped253

area (total of 80 frames). For example, a larva detected in a focal frame (e.g., frame 100) was imaged for 80 frames,254

extending from frame 60 to frame 140. If the larva was also detected in the next focal frame (e.g., frame 160), it would255

be imaged again from frames 120 to 200. This sliding window sampling scheme creates a temporal overlap of 20256

frames between clips from subsequent focal frames. This overlap was intended to reduce edge effects (e.g., strikes that257

occurred at the very beginning or end of a clip). Each resulting clip was then fed to the action classifier. the duration258

of the extracted clips was ∼ double the duration of a feeding event (∼ 46 frames on average), ensuring that we do not259

miss events due to sampling.260

Since false positive rates were found to be high on the test set, we manually reviewed all clips that were predicted261

to be strikes by our pipeline (i.e., were above the classifier’s decision threshold) to ascertain the predictions. This is262

why we consider the system an AI-assisted system rather than a fully automatic AI pipeline.263

2.3. Statistical analysis264

To determine whether our sampling of a small fraction of the population was sufficient to estimate the average strike265

rates in the population, we performed a bootstrap analysis on the coefficients of a zero-inflated Negative Binomial266

model (Zeileis et al., 2008). This model discerns between two types of zeros: (1) sampling zeros, which represent267

the portion of larvae that did not feed but were visible in the frame, and (2) structural zeros, which represent cases268

where feeding may have occurred, but was not visualized and hence not counted. We modeled the feeding strikes as a269
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Figure 3: A diagram of the analysis pipeline. The flow depicted in this diagram, starting in the upper left corner, shows
how we applied our analysis pipeline to long video sequences. Using a sliding window approach we sample a focal frame
every 60 frames and generate fish detections on that particular frame. Using these detections, we crop short clips centered
around individual fish (±40 frames, temporally overlapping between adjacent focal frames) and feed these into an action
classifier trained to predict whether the fish is performing a feeding strike. The pipeline reduces the problem of reviewing
long sequences with large frames containing multitudes of fish, to that of reviewing short clips mostly centered around a
single fish.

function of age, with the zero-inflated portion of the model depending on the mean density of fish per frame. This is270

because we reasoned that the main process governing the probability of strike visualization is the density of fish visible271

in the frame. To calculate the mean density of fish, we sampled 20 random frames uniformly from the length of the272

video and averaged the number of detections by our fish detector across frames. We chose to bootstrap the coefficients273

of the model rather than the raw feeding strike rate to account for the zero-inflated nature of the data. If we were to274

directly bootstrap the rates we would have been bootstrapping the stochastic processes (noisy) governing fish density275

and not our behavior of interest. Details on the bootstrap procedure and the zero-inflated model used can be found in276

the supplementary material (section S5).277

We next asked whether larval age, water temperature, oxygen concentration, and pH (independent variables) affect278

the observed strike rates (dependent variables). Because many of our videos featured no feeding events, we used a279

zero-inflated model (as explained above) to test this hypothesis. For this analysis, we use all the strike events identified280

during classifier evaluation, i.e., those identified by the final AI-assisted pipeline, as well as ones that were identified281

by the annotators during manual analysis and by classifiers with inferior performance (a total of n=128 strike events).282

Similar results were obtained using only strikes detected by the pipeline (see supplementary section S5.4) Four videos283

for which we had no temperature data were omitted from this analysis. All statistical analyses were implemented in R;284

zero-inflated models were computed using the pscl package (Zeileis et al., 2008).285

3. Results286

3.1. Classifier performance on the test set287

We used our test set of 4,563 clips to assess the performance of different classifiers and to determine a decision288

threshold to assign clips to action classes. The ability of our best-performing classifier to detect true strikes was very289

high, as indicated by the AuROC of 0.97 ± 0.003. However, all classifiers had intermediate precision, meaning that290
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most of the clips assigned to the "strike" action class featured non-strike behaviors (were false positives). Accordingly,291

the AuPRC of our classifier was 0.66±0.015. See supplementary material section S3.4 for full details on the classifier292

evaluation. This intermediate precision is a corollary of the extreme rarity of the positive (strike) class. When selecting293

a decision threshold for data evaluation (see 2.2.2), we set the threshold to 0.75 (see supplementary material section294

S3.6). Based on the distributions of strike scores in our test dataset, this threshold was expected to enable a recall of295

80% of the strike events.296

3.2. Applying the AI-assisted pipeline to untrimmed videos297

20

27
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27
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20

40

AI−assisted
 (15 work hours)

manual analysis
 (625 work hours)

method

ev
en

t c
ou

nt
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Figure 4: Pipeline performance on long videos. A comparison
of the strike events detected and missed by our AI-assisted
pipeline (left) and the manual analysis (right) if we consider
the pool of all events detected by both methods in 149
videos (N=54). An estimate of work hours is specified in
parenthesis. Events could either be detected by both methods
(yellow), detected (green) or missed (red) uniquely by the
focal method. Numbers within each block are the number of
events. The sum of the green and yellow areas in each bar
is the total events detected by that focal method. The AI-
assisted pipeline detected 42% more events compared with
the manual analysis.

We applied our AI-assisted pipeline to 149 high-298

speed videos, which had also been manually annotated.299

The pipeline generated 414,595 clips, of which 5.33%300

were above the decision threshold. We manually re-301

viewed these upper-percentile clips and annotated them302

according to their action class. For each video, we re-303

viewed either the first 500 clips or the entire 5 minutes,304

whichever came first. This AI-assisted pipeline outper-305

formed the trained observers in its ability to detect feed-306

ing events (Fig. 4) and in terms of time efficiency. Our307

trained observers detected 27 strikes during the first 5308

minutes of these videos, whereas the AI-assisted pipeline309

retrieved 47 strikes. Of these, 20 were strikes detected310

by the trained observers. Thus, the AI pipeline missed 7311

events detected by the observers, whereas the observers312

missed 27 events detected by the pipeline. If we consider313

the pool of all events detected by both methods in the 149314

5-min long videos (N=54), we can compare the recall315

of the human observers (50%) to that of the AI-assisted316

pipeline (87%; Fig. 4). The difference in performance317

between the two methods was found to be statistically318

significant (Pearson’s Chi-Square; 𝜒2 = 23.5, 𝑑𝑓 = 2,319

𝑝 << 0.001).320

In terms of time efficiency, the pipeline was designed321

to run offline, as such execution times are roughly one322

hour per video (𝑎𝑣𝑒𝑟𝑎𝑔𝑒±𝑆𝐷 of 71±79 min per video,323

median 49.5 minutes). Fully manual annotation of the 149 5-min long videos took roughly ∼ 625 work hours whereas324

reviewing the upper-percentile clips as mentioned above took ∼ 15 observer work hours.325

The performance advantage of the AI-assisted pipeline allowed us to analyze 74 additional videos that were not326

manually annotated due to time and budget constraints. In these videos, the pipeline generated 197,717 clips, of which327

9.54% were above the decision threshold. A manual review of these upper-percentile clips identified 25 additional328

strikes.329
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Figure 5: Accuracy of feeding strike rate estimates. Presented are the bootstrapped value for a Zero-inflated Negative
Binomial model describing the relationship between strike rate and age while accounting for zero inflation caused by
low fish densities in the imaged volume. Each panel shows the strike rate estimated for a given age group. The x-axis
represented the sample size (in minutes of video) for which the model was calculated. The round markers are the mean of
1000 bootstrapped samples. The colored lines are the 95 % confidence intervals (CI). The dashed black line represents the
point where the CIs are 15 % of the value of the mean. All groups converge to a stable estimate well before our maximal
sample size; suggesting we can accurately measure strike rates for our population.

3.3. Statistical analysis - are we accurately estimating strike rates?330

The bootstrap analysis revealed that using our pipeline with the best classifier, we sampled sufficiently to estimate331

strike rates for all age groups with a confidence interval of < 15% of the mean (Fig. 5). Another noticeable effect is the332

noisier convergence of the two younger age groups (8-14,15-20), which also had higher levels of zero inflation. All in333

all these results suggest that, by using appropriate statistical models, we can accurately estimate the strike rates of the334

fish in our study system using our analysis pipeline.335

3.4. Effect of environmental parameters336

The mean estimated strike rate was 8.1 ± 3.45 prey items per hour per fish. Strike rates doubled as water337

temperature increased from 19 to 22 degrees (zero-inflated model, p<0.005), but were unaffected by larval age, oxygen338

concentration, and pH (zero-inflated negative binomial model, p>0.05, supplementary Table S5; Fig. 6).339

4. Discussion340

In this study, we present an AI-assisted method for detecting rare behaviors of freely behaving fish larvae (Fig. 3).341

We successfully trained our deep learning models using limited data (Fig. S4, Fig. 4), to produce an analysis pipeline342

that far surpasses the performance of manual annotation by experts, not only in terms of time efficiency but also in343

its ability to retrieve events of interest (Fig. 4). We used our data to directly estimate the strike rates of larval fish in344

large mesocosms outside the laboratory (Fig. 5) and to assess the effects of environmental factors, as maintened by an345

aquaculture rearing facility, on these rates (Fig. 6). Our analysis revealed that strike rates were similar and low across346

age groups, irrespective of pH and oxygen levels (Table S5). Strike rates doubled with a 3 degrees increase in water347

temperature (Fig. 6). Similar effects were reported in larval fish based on stomach content analysis (Cunha and Planas,348

1995).349
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Figure 6: Modelled effect of temperature on strike rates. The strike rates (y-axis) predicted by a zero-inflated negative
binomial model (round markers) for the observed temperature gradient (x-axis) are plotted for each age group (color). The
predictions were calculated for the median values of oxygen, pH, and fish density. The curves are the model’s fit across
the temperature gradient. Shaded areas around each line are the 95 % confidence intervals. Temperature has a significant
positive effect on strike rates, and differences between age groups were not significant. See Table S5 in the supplementary
material.

Our pipeline, although not fully automatic yet, outperformed the unassisted manual analysis of untrimmed videos by350

expert human annotators (Fig. 4). Even when adding the computer processing time at the time budjet of the AI-assisted351

pipeline, we obtain a 77.7 % improvement in work hours (139 hours for the pipeline vs 625 hours for the annotators).352

By making an informed choice regarding its decision thresholds, we were able to reduce the work needed for manual353

review within the pipeline by ∼ 93.3%. Though selecting a high decision threshold (0.75) incurred a cost in terms354

of recall (only 74% othe events detected by observers were detected), we found that manual analysis resulted in even355

poorer recall. Since using our assisted scheme we found events missed by the observers, in fact the human annotators356

recall on the videos was only 50%, making our method not only faster but also better at event retrieval.357

Evidence of reduced accuracy of human annotation in data acquired underwater in uncontrolled conditions was358

mainly attributed to low image quality stemming from the difficult filming environment (Barbedo, 2022). Additionally,359

this can be partially explained by the limited capacity of human cognition. Processing long, high-resolution frames360

containing multiple behaving fish is challenging and requires a meticulous review of each visible fish. A naive solution361

would be to film videos with a lower density of individuals, but as we are filming freely behaving animals as grown by362

the rearing facility, we could not modulate or control the density of fish imaged.363

To the best of our knowledge, this is the first time that larval feeding strike rates were directly measured outside of364

the laboratory in large mesocosms. The rates we estimated are on the same order of magnitude as the feeding success365

rates documented in the laboratory by China and Holzman (2014). But, feeding success rates represent only some of366

the strikes, because 38.5-72.4% of attempts (depending on age, 9 - 23 DPH) constitute a failure to capture the prey367

(China et al., 2017; China and Holzman, 2014). Taking this into account, the strike rates we observed are substantially368
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lower than those observed in the laboratory; implying that the feeding rates in the rearing pools will also be markedly369

lower. However, our data do not reveal what factors limit the larvae’s strike rate. Our statistical analysis indicates370

that oxygen concentration and pH levels did not significantly affect strike rates in the pools. Furthermore, pH and371

oxygen levels in the pools and the laboratory were similar, and within the recommended range for the species. The372

food concentrations in the laboratory were similar to that of the rearing pools, and in both locations seemed saturated. A373

major difference between the rearing pools and the laboratory was the occurrence of currents and turbulence, stemming374

from the vigorous aeration of the rearing pools. Strong turbulence is known to impede larval feeding and attempt375

rates (MacKenzie and Kiørboe, 2000) Unfortunately, we did not quantify the current and turbulence within the pools,376

therefore we cannot assess this hypothesis quantitatively.377

4.1. Future directions and transferability to other systems378

Ideally, a well-trained classifier should allow a fully-automated classification pipeline. However, we suggest that the379

limitations of our pipeline are an inherent problem stemming from the rarity of the events of interest. When sampling380

rare behavioral events from a background of more frequent ones, the resulting datasets are highly imbalanced, with381

the minor (positive) class being the behavioral event of interest (e.g., Bessa et al., 2022; Thomson et al., 2015). When382

applying our pipeline to full videos, the background class was 99.82% of the data reviewed. With strikes making up383

only 0.18% of the data, even a classifier with an error rate of 1.5% (erroneously assigning "non-strikes" to the "strikes"384

class) will assign similar numbers of "strikes" and "non-strikes" to the "strike" class and have low precision.385

An emerging solution to the automatic detection of rare events might be the application of a different computer386

vision approach, namely an unsupervised anomaly detection algorithm. This method involves training an algorithm on387

the imagery of ”normal” events; defined as the class of events that are common but of no interest to the researcher.388

By definition, videos of freely-behaving animals are unlikely to contain rare events, therefore it is easy to generate a389

training set of routine events, with minimal annotation effort. An anomaly detection algorithm learns the distribution390

that defines the ”normal” events during training. At inference, it compares new imagery to this distribution space.391

Events that fall outside the learned space are considered ”anomalies”; these putative anomalies represent rare events392

that can be of biological importance. Applications of anomaly detection algorithms to animal behaviors are few and393

mostly based on low-dimensional sensor data (e.g., GPS, ECG, and motion sensors, Kiersztyn et al., 2022; Lenning394

et al., 2017; Haladjian et al., 2017; Cai et al., 2019). However, our study provides a dataset that could be used for395

training and evaluation of future anomaly detection pipelines on videos, a rich, high-dimensional data signal. We feel396

this direction, once properly tried and tested, can provide a tool for quantifying rare fitness-determining behaviors,397

hopefully alleviating data analysis bottlenecks.398

Most computer vision systems require re-evaluation and training when transferring to a new environment.399

Specifically for our pipeline, it generalized well over a wide range of visual conditions. This is a good indication400

for its potential transferability, given proper training data. However, further adaptations are needed before applying401

our pipeline in the field, particularly given the yet high false positive amounts, which might render the search for402

scarce behaviors unfeasible. To use our system in a new environment one will likely need to train a detector and an403

action classifier with their own data. The amount of labeled data required will vary depending on the variability in404

visual conditions of the study sites, and how discernable are the behaviors of interest. Our larval fish detector can405

be replaced with any other off-the-shelf animal detector ( e.g., MegaDetector in a camera trap setup Beery et al.,406

Unpublished results) or a detector trained specifically for the dataset of interest. There are several popular code-bases407

making fine-tuning detectors accessible to people with little technical background (e.g., Wu et al., 2019). Detectors408

can be fine-tuned with a few hundred images, depending on the variability of visual conditions. Action classifiers409

require more attention, as the loading and feeding of video clips into models are not as straightforward. The training410
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of these classifiers is also more computationally intensive, and requires access to a computer with a GPU (we used411

a single NVIDIA R2090 with 12GB memory). For the classifiers, we also used open-source codebases (Fan et al.,412

2021; Feichtenhofer et al., 2019), all of our codes are available in accompanying GitHub repository. We showed that413

by selecting augmentations relevant to the data and adding a strong signal, a sort of prior, that focused the model on414

the motion of the input (the variance image) we were able to achieve a good recall of strike events. Similar use of such415

priors was also done by Kay et al. (2022), where they used the difference image between adjacent frames as additional416

input to the model. Selecting such data prior based on our knowledge of the behavior and its kinematics can thus greatly417

improve model performance, even on a low data budget.418

Acknowledgments We thank Keren Perry and Tamara Gurevich for their indispensable help with acquiring,
annotating and analyzing larval feeding behavior manually. We thank the Ardag Hatchery for the use of their facilities
and continued support in our research. We also thank the entire Holzman lab for their help with the data labeling of the
naturalistic dataset. We are indebted to Amir Jevnisek, Tal Perevolotsky and Anael Engel for inspiring brain-storming
sessions. A special thanks to Moti Ohevia, Erez Levin, and the technical team of the Interuniversity Institute for Marine
Science of Eilat for their help in the construction of the camera setups.

Statements and declarations The authors report no competing interests. This study was funded by the Israeli
Ministry of Agriculture [grant number 13-37-0009], the Israeli Science Foundation [grant number ISF 592/22],
Microsoft AI for Earth, the IDSI grant for cloud computing resources for graduate students, and The Colton Family
Next Generation Technological Institute and the Miles Nadal institute for Technological Entrepreneurship at Tel Aviv
University.

All datasets described in this paper will become available upon acceptance through an appropriate data repository.
Full code is available in the paper’s GitHub repository, as well as trained model weights. The authors state that they
comply with the ethical standards as defined by the journal.

Author’s contribution S.B: data curation, formal analysis, investigation, methodology, validation, visualization,
writing—original draft and writing—review and editing; L.L: data acquisition, data curation, data analysis, methodol-
ogy, writing—review and editing; S.A.: conceptualization, funding acquisition, methodology, resources, supervision
and writing—original draft and writing—review and editing; R.H.: conceptualization, data curation, funding acquisi-
tion, methodology, resources, supervision, writing—original draft and writing—review and editing .

References
C. C. Aggarwal et al. Neural networks and deep learning. Springer Cham, 1 edition, 2018. URL https://doi.org/10.1007/

978-3-319-94463-0.
A. Ariew and R. C. Lewontin. The confusions of fitness. British Journal for the Philosophy of Science, 55(2), 2004. URL https://doi.org/

10.1093/bjps/55.2.347.
M. E. Arnegard, M. D. McGee, B. Matthews, K. B. Marchinko, G. L. Conte, S. Kabir, N. Bedford, S. Bergek, Y. F. Chan, F. C. Jones, et al. Genetics

of ecological divergence during speciation. Nature, 511(7509):307–311, 2014. URL https://doi.org/10.1038/nature13301.
S. Bar, L. Levy, S. Avidan, and R. Holzman. Analysis of larval fish feeding behavior under naturalistic conditions. bioRxiv, Unpublished results.

doi: https://doi.org/10.1101/2022.11.14.516417.
J. G. A. Barbedo. A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management. Fishes, 7(6):

335, 2022. URL https://doi.org/10.3390/fishes7060335.
R. D. Bassar, T. Heatherly, M. C. Marshall, S. A. Thomas, A. S. Flecker, and D. N. Reznick. Population size-structure-dependent fitness and

ecosystem consequences in trinidadian guppies. Journal of Animal Ecology, 84(4):955–968, 2015. URL https://doi.org/10.1111/

1365-2656.12353.

S Bar et al.: Preprint submitted to Elsevier Page 14 of 18

https://github.com/shir3bar/larval_fish_behavior_analysis
https://github.com/shir3bar/larval_fish_behavior_analysis
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1093/bjps/55.2.347
https://doi.org/10.1093/bjps/55.2.347
https://doi.org/10.1038/nature13301
https://doi.org/10.3390/fishes7060335
https://doi.org/10.1111/1365-2656.12353
https://doi.org/10.1111/1365-2656.12353


Determinants of larval fish strike rates

S. Beery, D. Morris, and S. Yang. Efficient pipeline for camera trap image review. arXiv preprint arXiv:1907.06772, Unpublished results. URL
https://doi.org/10.48550/arXiv.1907.06772.

J. Bessa, D. Biro, and K. Hockings. Inter-community behavioural variation confirmed through indirect methods in four neighbouring chimpanzee
communities in cantanhez np, guinea-bissau. Royal Society Open Science, 9(2):211518, 2022. URL https://doi.org/10.1098/rsos.

211518.
W. A. Boyle and E. H. Shogren. Sex and deception: a rare case of cheating in a lekking tropical bird. Journal of Ethology, 37(2):151–155, 2019.

URL https://doi.org/10.1007/s10164-019-00592-8.
J. Brabec, T. Komárek, V. Franc, and L. Machlica. On model evaluation under non-constant class imbalance. In International Conference on

Computational Science, pages 74–87. Springer, 2020. URL https://doi.org/10.1007/978-3-030-50423-6_6.
L. Buckley. Rna-dna ratio: an index of larval fish growth in the sea. Marine Biology, 80(3):291–298, 1984. URL https://doi.org/10.1007/

BF00392824.
Y. Cai, L. Ma, and G. Liu. A night-time anomaly detection system of hog activities based on passive infrared detector. Applied Engineering in

Agriculture, 35(4):481–493, 2019. URL https://doi.org/10.13031/aea.13007.
J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset. In proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 6299–6308, 2017. URL https://doi.org/10.1109/CVPR.2017.502.
V. China and R. Holzman. Hydrodynamic starvation in first-feeding larval fishes. Proceedings of the National Academy of Sciences, 111(22):

8083–8088, 2014. doi: 10.1073/pnas.1323205111. URL https://doi.org/10.1073/pnas.1323205111.
V. China, L. Levy, A. Liberzon, T. Elmaliach, and R. Holzman. Hydrodynamic regime determines the feeding success of larval fish through the

modulation of strike kinematics. Proceedings of the Royal Society B: Biological Sciences, 284(1853):20170235, 2017. doi: 10.1098/rspb.2017.
0235. URL https://doi.org/10.1098/rspb.2017.0235.

S. Christin, É. Hervet, and N. Lecomte. Applications for deep learning in ecology. Methods in Ecology and Evolution, 10(10):1632–1644, 2019.
doi: 10.1111/2041-210X.13256. URL https://doi.org/10.1111/2041-210X.13256.

C. N. Cook, A. R. Freeman, J. C. Liao, and L. A. Mangiamele. The philosophy of outliers: Reintegrating rare events into biological science.
Integrative and Comparative Biology, 61(6):2191–2198, 2021. URL https://doi.org/10.1093/icb/icab166.

G. Coro and M. B. Walsh. An intelligent and cost-effective remote underwater video device for fish size monitoring. Ecological Informatics, 63:
101311, 2021.

V. Crespi and M. New. Cultured aquatic species fact sheets. FAO, 2009. URL https://www.fao.org/fishery/docs/DOCUMENT/

aquaculture/CulturedSpecies/file/en/en_giltheadseabr.htm.
I. Cunha and M. Planas. Ingestion rates of turbot larvae (scophthalmus maximus) using different-sized live prey. In ICES MSS Vol. 201-Mass

Rearing of Juvenile Fish, 1995. URL https://doi.org/10.17895/ices.pub.19271516.
S. R. Datta, D. J. Anderson, K. Branson, P. Perona, and A. Leifer. Computational neuroethology: a call to action. Neuron, 104(1):11–24, 2019. doi:

10.1016/j.neuron.2019.09.038. URL https://doi.org/10.1016/j.neuron.2019.09.038.
G. Englund and S. D. Cooper. Scale effects and extrapolation in ecological experiments. volume 33 of Advances in Ecological Research, pages

161–213. Academic Press, 2003. doi: https://doi.org/10.1016/S0065-2504(03)33011-9. URL https://www.sciencedirect.com/science/

article/pii/S0065250403330119.
H. Fan, T. Murrell, H. Wang, K. V. Alwala, Y. Li, Y. Li, B. Xiong, N. Ravi, M. Li, H. Yang, J. Malik, R. Girshick, M. Feiszli, A. Adcock, W.-Y. Lo,

and C. Feichtenhofer. PyTorchVideo: A deep learning library for video understanding. In Proceedings of the 29th ACM International Conference
on Multimedia, 2021. https://pytorchvideo.org/.

C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video recognition. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 6202–6211, 2019. URL https://doi.org/10.1109/10.1109/ICCV.2019.00630.

C. J. Foley, D. L. Bradley, and T. O. Höök. A review and assessment of the potential use of rna: Dna ratios to assess the condition of entrained fish
larvae. Ecological Indicators, 60:346–357, 2016. URL https://doi.org/10.1016/j.ecolind.2015.07.00.

R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015. URL https:

//doi.org/10.1109/ICCV.2015.169.
R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, et al. The"

something something" video database for learning and evaluating visual common sense. In Proceedings of the IEEE international conference
on computer vision, pages 5842–5850, 2017. URL https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.622.

J. Haladjian, Z. Hodaie, S. Nüske, and B. Brügge. Gait anomaly detection in dairy cattle. In Proceedings of the Fourth International Conference
on Animal-Computer Interaction, pages 1–8, 2017. URL https://doi.org/10.1145/3152130.3152135.

J. A. Hanley et al. Receiver operating characteristic (roc) methodology: the state of the art. Crit Rev Diagn Imaging, 29(3):307–335, 1989.

S Bar et al.: Preprint submitted to Elsevier Page 15 of 18

https://doi.org/10.48550/arXiv.1907.06772
https://doi.org/10.1098/rsos.211518
https://doi.org/10.1098/rsos.211518
https://doi.org/10.1007/s10164-019-00592-8
https://doi.org/10.1007/978-3-030-50423-6_6
https://doi.org/10.1007/BF00392824
https://doi.org/10.1007/BF00392824
https://doi.org/10.13031/aea.13007
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1073/pnas.1323205111
https://doi.org/10.1098/rspb.2017.0235
https://doi.org/10.1111/2041-210X.13256
https://doi.org/10.1093/icb/icab166
https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/en/en_giltheadseabr.htm
https://www.fao.org/fishery/docs/DOCUMENT/aquaculture/CulturedSpecies/file/en/en_giltheadseabr.htm
https://doi.org/10.17895/ices.pub.19271516
https://doi.org/10.1016/j.neuron.2019.09.038
https://www.sciencedirect.com/science/article/pii/S0065250403330119
https://www.sciencedirect.com/science/article/pii/S0065250403330119
https://pytorchvideo.org/
https://doi.org/10.1109/10.1109/ICCV.2019.00630
https://doi.org/10.1016/j.ecolind.2015.07.00
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.622
https://doi.org/10.1145/3152130.3152135


Determinants of larval fish strike rates

R. J. Hanscom, D. L. DeSantis, J. L. Hill, T. Marbach, J. Sukumaran, A. F. Tipton, M. L. Thompson, T. E. Higham, and R. W. Clark. How to study
a predator that only eats a few meals a year: high-frequency accelerometry to quantify feeding behaviours of rattlesnakes (crotalus spp.). Animal
Biotelemetry, 11(1):1–12, 2023. URL https://doi.org/10.1186/s40317-023-00332-3.

J. Hjort. Fluctuations in the great fisheries of northern europe viewed in the light of biological research. Rapports et Procès-Verbaux des Réunions,
20:1–13, 1914.

R. Holzman, V. China, S. Yaniv, and M. Zilka. Hydrodynamic constraints of suction feeding in low reynolds numbers, and the critical period of larval
fishes. Integrative and comparative biology, 55(1):48–61, 2015. doi: 10.1093/icb/icv030. URL https://doi.org/10.1093/icb/icv030.

E. D. Houde. Emerging from hjort’s shadow. Journal of Northwest Atlantic Fishery Science, 41, 2008. doi: 10.2960/J.v41.m634. URL
https://doi.org/10.2960/J.v41.m634.

E. D. Houde and R. C. Schekter. Feeding by marine fish larvae: developmental and functional responses. Environmental Biology of Fishes, 5(4):
315–334, 1980. doi: 10.1007/BF00005186. URL https://doi.org/10.1007/BF00005186.

D. Joska, L. Clark, N. Muramatsu, R. Jericevich, F. Nicolls, A. Mathis, M. W. Mathis, and A. Patel. Acinoset: a 3d pose estimation dataset and
baseline models for cheetahs in the wild. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13901–13908.
IEEE, 2021. URL https://doi.org/10.1109/ICRA48506.2021.9561338.

H. O. Kamacı, Ş. Saka, and K. Fırat. The cleavage and embryonic phase of gilthead sea bream (sparus aurata linnaeus, 1758) eggs. Su Ürünleri
Dergisi, 22(1):205–209, 2005. URL http://www.egejfas.org/en/pub/issue/5017/68075?publisher=ege.

J. Kay, P. Kulits, S. Stathatos, S. Deng, E. Young, S. Beery, G. Van Horn, and P. Perona. The caltech fish counting dataset: A benchmark for
multiple-object tracking and counting. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part VIII, pages 290–311. Springer, 2022. URL https://doi.org/10.1007/978-3-031-20074-8_17.

A. Kiersztyn, P. Karczmarek, R. Łopucki, K. Kiersztyn, T. Nowicki, K. Perzanowski, and W. Olech. The use of information granules to detect
anomalies in spatial behavior of animals. Ecological Indicators, 136:108583, 2022. URL https://doi.org/10.1016/j.ecolind.2022.

108583.
L. Koch, I. Shainer, T. Gurevich, and R. Holzman. The expression of agrp1, a hypothalamic appetite-stimulating neuropeptide, reveals

hydrodynamic-induced starvation in a larval fish. Integrative Organismal Biology, 1(1):oby003, 2019. URL https://doi.org/10.1093/

iob/oby003.
M. Kowal, M. Siam, M. A. Islam, N. D. Bruce, R. P. Wildes, and K. G. Derpanis. A deeper dive into what deep spatiotemporal networks encode:

Quantifying static vs. dynamic information. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
13999–14009, 2022. URL https://doi.org/10.1109/CVPR52688.2022.01361.

R. Labuguen, J. Matsumoto, S. B. Negrete, H. Nishimaru, H. Nishijo, M. Takada, Y. Go, K.-i. Inoue, and T. Shibata. Macaquepose: a novel
“in the wild” macaque monkey pose dataset for markerless motion capture. Frontiers in behavioral neuroscience, 14:581154, 2021. URL
https://doi.org/10.3389/fnbeh.2020.581154.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015. doi: 10.1038/nature14539. URL https://doi.org/10.

1038/nature14539.
M. Lenning, J. Fortunato, T. Le, I. Clark, A. Sherpa, S. Yi, P. Hofsteen, G. Thamilarasu, J. Yang, X. Xu, et al. Real-time monitoring and analysis

of zebrafish electrocardiogram with anomaly detection. Sensors, 18(1):61, 2017. URL https://doi.org/10.3390/s18010061.
B. MacKenzie, W. Leggett, R. Peters, et al. Estimating larval fish ingestion rates: Can laboratory derived values be reliably extrapolated to the wild?

Marine ecology progress series. Oldendorf, 67(3):209–225, 1990. URL https://doi.org/10.3354/meps067209.
B. R. MacKenzie and T. Kiørboe. Larval fish feeding and turbulence: a case for the downside. Limnology and Oceanography, 45(1):1–10, 2000.

URL https://doi.org/10.4319/lo.2000.45.1.0001.
C. H. Martin and P. C. Wainwright. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science, 339(6116):

208–211, 2013. URL https://www.science.org/10.1126/science.1227710.
A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, and M. Bethge. Deeplabcut: markerless pose estimation of user-

defined body parts with deep learning. Nature neuroscience, 21(9):1281–1289, 2018. doi: 10.1038/s41593-018-0209-y. URL https:

//doi.org/10.1038/s41593-018-0209-y.
J. B. McGraw and H. Caswell. Estimation of individual fitness from life-history data. The American Naturalist, 147(1):47–64, 1996. URL

https://doi.org/10.1086/285839.
E. M. McLean, E. A. Archie, and S. C. Alberts. Lifetime fitness in wild female baboons: trade-offs and individual heterogeneity in quality. The

American Naturalist, 194(6):745–759, 2019. URL https://doi.org/10.1086/705810.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,

Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural

S Bar et al.: Preprint submitted to Elsevier Page 16 of 18

https://doi.org/10.1186/s40317-023-00332-3
https://doi.org/10.1093/icb/icv030
https://doi.org/10.2960/J.v41.m634
https://doi.org/10.1007/BF00005186
https://doi.org/10.1109/ICRA48506.2021.9561338
http://www.egejfas.org/en/pub/issue/5017/68075?publisher=ege
https://doi.org/10.1007/978-3-031-20074-8_17
https://doi.org/10.1016/j.ecolind.2022.108583
https://doi.org/10.1016/j.ecolind.2022.108583
https://doi.org/10.1093/iob/oby003
https://doi.org/10.1093/iob/oby003
https://doi.org/10.1109/CVPR52688.2022.01361
https://doi.org/10.3389/fnbeh.2020.581154
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/s18010061
https://doi.org/10.3354/meps067209
https://doi.org/10.4319/lo.2000.45.1.0001
https://www.science.org/10.1126/science.1227710
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1086/285839
https://doi.org/10.1086/705810


Determinants of larval fish strike rates

Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., Vancouver, Canada, 2019. URL http://papers.neurips.

cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
P. Pepin. Feeding by larval fish: how taxonomy, body length, mouth size, and behaviour contribute to differences among individuals and species

from a coastal ecosystem. ICES Journal of Marine Science, 80(1):91–106, 2023. URL https://doi.org/10.1093/icesjms/fsac215.
T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets.

PloS one, 10(3):e0118432, 2015. doi: 10.1371/journal.pone.0118432. URL https://doi.org/10.1371/journal.pone.0118432.
T. Saito and M. Rehmsmeier. Precrec: fast and accurate precision–recall and roc curve calculations in r. Bioinformatics, 33(1):145–147, 2017. doi:

10.1093/bioinformatics/btw570. URL https://doi.org/10.1093/bioinformatics/btw570.
B. L. Sargeant, J. Mann, P. Berggren, and M. Krützen. Specialization and development of beach hunting, a rare foraging behavior, by wild bottlenose

dolphins (tursiops sp.). Canadian Journal of Zoology, 83(11):1400–1410, 2005. URL https://doi.org/10.1139/z05-136.
C. Schlechtriem, U. Focken, and K. Becker. Stable isotopes as a tool for nutrient assimilation studies in larval fish feeding on live food. Aquatic

Ecology, 38:93–100, 2004. URL https://dx.doi.org/10.1023/b:aeco.0000020951.76155.3e.
D. Schluter. Ecology and the origin of species. Trends in ecology & evolution, 16(7):372–380, 2001. URL https://doi.org/10.1016/

S0169-5347(01)02198-X.
E. Shamur, M. Zilka, T. Hassner, V. China, A. Liberzon, and R. Holzman. Automated detection of feeding strikes by larval fish using continuous

high-speed digital video: a novel method to extract quantitative data from fast, sparse kinematic events. Journal of Experimental Biology, 219
(11):1608–1617, 2016. doi: 10.1242/jeb.133751. URL https://doi.org/10.1242/jeb.133751.

E. V. Sheehan, D. Bridger, S. J. Nancollas, and S. J. Pittman. Pelagicam: A novel underwater imaging system with computer vision for semi-
automated monitoring of mobile marine fauna at offshore structures. Environmental monitoring and assessment, 192:1–13, 2020. URL
https://doi.org/10.1007/s10661-019-7980-4.

R. Shields. Larviculture of marine finfish in europe. Aquaculture, 200(1-2):55–88, 2001. doi: 10.1016/S0044-8486(01)00694-9. URL
https://doi.org/10.1016/S0044-8486(01)00694-9.

N. Sommerfeld and R. Holzman. The interaction between suction feeding performance and prey escape response determines feeding success in larval
fish. Journal of Experimental Biology, 222(17):jeb204834, 2019. doi: 10.1242/jeb.204834. URL https://doi.org/10.1242/jeb.204834.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer learning. In V. Kůrková, Y. Manolopoulos, B. Hammer,
L. Iliadis, and I. Maglogiannis, editors, Artificial Neural Networks and Machine Learning – ICANN 2018, pages 270–279, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-01424-7. URL https://doi.org/10.1007/978-3-030-01424-7_27.

Y. Tanaka, K. Satoh, H. Yamada, T. Takebe, H. Nikaido, and S. Shiozawa. Assessment of the nutritional status of field-caught larval pacific bluefin
tuna by rna/dna ratio based on a starvation experiment of hatchery-reared fish. Journal of Experimental Marine Biology and Ecology, 354(1):
56–64, 2008. URL https://doi.org/10.1016/j.jembe.2007.10.007.

J. A. Thomson, A. Gulick, and M. R. Heithaus. Intraspecific behavioral dynamics in a green turtle chelonia mydas foraging aggregation. Marine
Ecology Progress Series, 532:243–256, 2015. URL https://doi.org/10.3354/meps11346.

D. Tuia, B. Kellenberger, S. Beery, B. R. Costelloe, S. Zuffi, B. Risse, A. Mathis, M. W. Mathis, F. van Langevelde, T. Burghardt, et al.
Perspectives in machine learning for wildlife conservation. Nature communications, 13(1):1–15, 2022. doi: 10.1038/s41467-022-27980-y.
URL https://doi.org/10.1038/s41467-022-27980-y.

J. Van de Walle, B. Larue, G. Pigeon, and F. Pelletier. Different proxies, different stories? imperfect correlations and different determinants of fitness
in bighorn sheep. Ecology and Evolution, 12(12):e9582, 2022. URL https://doi.org/10.1002/ece3.9582.

V. A. Viblanc, C. Saraux, A. Tamian, F. Criscuolo, D. W. Coltman, S. Raveh, J. O. Murie, and F. S. Dobson. Measuring fitness and inferring natural
selection from long-term field studies: different measures lead to nuanced conclusions. Behavioral Ecology and Sociobiology, 76(6):79, 2022.
URL https://doi.org/10.1007/s00265-022-03176-8.

B. G. Weinstein. A computer vision for animal ecology. Journal of Animal Ecology, 87(3):533–545, 2018. doi: 10.1111/1365-2656.12780. URL
https://doi.org/10.1111/1365-2656.12780.

R. W. Wrangham and E. Van Zinnicq Bergmann Riss. Rates of predation on mammals by gombe chimpanzees, 1972–1975. Primates, 31:157–170,
1990. URL https://doi.org/10.1007/BF02380938.

Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/facebookresearch/detectron2, 2019.
S. Xiao, Y. Wang, A. Perkes, B. Pfrommer, M. Schmidt, K. Daniilidis, and M. Badger. Multi-view tracking, re-id, and social network analysis

of a flock of visually similar birds in an outdoor aviary. International Journal of Computer Vision, 131(6):1532–1549, 2023. URL https:

//doi.org/10.1007/s11263-023-01768-z.
S. Yaniv, D. Elad, and R. Holzman. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture.

Journal of Experimental Biology, 217(20):3748–3757, 2014. URL https://doi.org/10.1242/jeb.104331.

S Bar et al.: Preprint submitted to Elsevier Page 17 of 18

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1093/icesjms/fsac215
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1093/bioinformatics/btw570
https://doi.org/10.1139/z05-136
https://dx.doi.org/10.1023/b:aeco.0000020951.76155.3e
https://doi.org/10.1016/S0169-5347(01)02198-X
https://doi.org/10.1016/S0169-5347(01)02198-X
https://doi.org/10.1242/jeb.133751
https://doi.org/10.1007/s10661-019-7980-4
https://doi.org/10.1016/S0044-8486(01)00694-9
https://doi.org/10.1242/jeb.204834
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1016/j.jembe.2007.10.007
https://doi.org/10.3354/meps11346
https://doi.org/10.1038/s41467-022-27980-y
https://doi.org/10.1002/ece3.9582
https://doi.org/10.1007/s00265-022-03176-8
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1007/BF02380938
https://github.com/facebookresearch/detectron2
https://doi.org/10.1007/s11263-023-01768-z
https://doi.org/10.1007/s11263-023-01768-z
https://doi.org/10.1242/jeb.104331


Determinants of larval fish strike rates

M. Yúfera and M. Darias. The onset of exogenous feeding in marine fish larvae. Aquaculture, 268(1-4):53–63, 2007. URL https://doi.org/

10.1016/j.aquaculture.2007.04.050.
M. Yúfera, F. J. Moyano, and G. Martínez-Rodríguez. The digestive function in developing fish larvae and fry. from molecular gene expression to

enzymatic activity. Emerging issues in fish larvae research, pages 51–86, 2018. URL https://doi.org/10.1007/978-3-319-73244-2_3.
A. Zeileis, C. Kleiber, and S. Jackman. Regression models for count data in R. Journal of Statistical Software, 27(8), 2008. URL http:

//www.jstatsoft.org/v27/i08/.

S Bar et al.: Preprint submitted to Elsevier Page 18 of 18

https://doi.org/10.1016/j.aquaculture.2007.04.050
https://doi.org/10.1016/j.aquaculture.2007.04.050
https://doi.org/10.1007/978-3-319-73244-2_3
http://www.jstatsoft.org/v27/i08/
http://www.jstatsoft.org/v27/i08/

